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A. SUMMARY

This report presents the status of the research project being
conducted in the Department of Aeronautics and Astronautics at the
University of Washington under Research Grant NsG-40l1 from the
National Aeronautics and Space Administration. This report covers
work completed during the period October 1, 1965 through April 1,
1966. It is for use of the technical monitor of the grant and is
not intended for publication or general distribution.

The project consists of an analytical and experimental study
to establish a procedure for stress analysis of a viscoelastic
structure subject to transient temperature and time-dependent load-
ings. The extension of photoelasticity to this problem has been
described in previous reports. The analytical basis for the inter-
pretation of photoviscoelastic observations in the linear range,
details of the experimental procedure, and example problems were
presented in September 1965.* That report is in preparation by
NASA as a formal NASA publication. This document describes subse-
quent work to further extend the method and to refine the establish-
ed procedures.

Section B contains a description of further work on the linear

photoviscoelastic problems. Modifications to the photoelastic

*
"Photoviscoelasticity" by E. H. Dill and C. W. Fowlkes, University
of Washington, Department of Aeronautics and Astronautics, Report
65-1. ,



bench are described. The direct reduction of data from a visco-
elastic test by use of a uniaxial test specimen as an analog com-
puter is presented. Several problems which illustrate photovisco-
elastic procedures and which are of practical interest are solved.

The extension of the embedded polariscope method to low
modulus material is also described in Section B. This technique
is useful either for elastic or viscoelastic materials where the
"film" of polaroid would substantially alter the stress distribu-
tion. Three-dimensional models with transient stress distribution
can be studied by this means.

The solution of a viscoelastic problem with non-uniform
temperature distribution is given in Section C. We are now in the
process of obtaining an analytical solution of this problem to
compare with the experimental results.

In order to extend the photoviscoelastic technique to dynamic
loading, we require a means of rapidly rotating the plane of polar-
ization of the analyzer and polarizer. An invention is described
in Section D in which the plane of polarization of a polarizer is
rotated electronically.

The fundamental theory for the study of non-linear viscoelas-
ticity and elasticity problems is presented in Section E. The
nature of constitutive relations for the mechanical and electro-
magnetic behavior of high polymers experiencing large strains is
derived. The use of such relations for a given material to solve
stress analysis problems for non-linear viscoelasticity and non-

linear elasticity by an extension of photoelasticity is indicated.
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B, EXPERIMENTAL METHODS
by
C. W. Fowlkes

1. INTRODUCTION

In this section, the progress on the experimental techniques
for linear photothermoviscoelasticity is reviewed. Improvements in
the equipment are described along with the presentation of new ex-
perimental techniques. The results of several new tests are pre-
sented.

Included in this section is a description of the analog method
of data reduction which considerably simplifies the determination
of the stress history in the model. A paper describing the analog
method has been accepted for publication by the Society for Experi-
mental Stress Analysis. Several experiments are described in this
report in which the analog method was employed for data reduction.

Preliminary experiments have been performed on the development

"of an embedded polariscope technique to be used in three-dimension-

al viscoelastic models. The results of these experiments are quite

promising and several aspects of the technique have been established.

An actual three-dimensional test will be performed in the future.

2. PHOTOVISCOELASTIC BENCH

Improvements have been made on the rotating polaroid bench:
a 35mm pulse-~cine camera, Northridge Research Type RF 12, has been
added to replace the 16mm Cine Special. The 35mm camera is trig-

gered by an electrical pulse for single frame operation at rates
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to 12 frames/second and will operate cine at 20 frames/second. A »
pulse generator designed and built in our laboratory produces
shaped pulses at frequencies continuously adjustable between 5
pulses/second and 1 pulse each 120 seconds. This pulse generator
switches 110 vdc into the polaroid stepping solenoids and, through
a time delay, switches 28 vdc into the 35mm camera. Thus, for
every pulse into the system, the polaroids rotate a fixed interval,
stop, and then a single picture is taken. The image of a clock
contained within the camera is included on each frame.
The increased resolution of the larger 35mm negative improves
the accuracy of determining fringe orders in regions of stress con-
centration. The semi-automatic operatibn of the new system simpli-
fies the testing procedure. A photograph of the rotating polaroid -

bench with the 35mm camera is shown in Figure 1.

3. ANALOG METHOD OF DATA REDUCTION

In general, there can be time variations of the isochromatic
fringe order, the isoclinic orientation, and the temperature at
each point in a viscoelastic model. A procedure for determining
the history of the principal stress difference at any point in the
model was discussed in previous reports. That procedure can be
applied if the material is linear viscoelastic and optically linear.
A tensile calibration was performed to determine the mechanical and
optical properties of the model material over the range of stresses
and temperatures existing in the model and the observations from an

experiment were processed numerically using the calibration data.
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Another approach for determining the history of difference of
principal stresses from observed fringe order is the following ana-
log method. A simple model, such as a tensile specimen, whose
state of stress is knqwn is constructed. This model is then sub-
jected to the same temperature history as a particular point of the
prototype while the loads are adjusted to produce the same isochro-
matic and isoclinic history as observed in the prototype. The
principal stress difference history is then computed for the model
from the boundary loads. The result is the principal stress dif-
ference history for the prototype.

In principle, the analog method could be used to reduce the
data from any test. In practice, however, accounting for the iso-
clinic variation in an analog model is difficult. The analog
method is most useful when the isoclinic orientation is constant.
For such problems, the analog model can be a simple tensile speci-
men. Several problems of this type are analyzed below.

The analog solutions were performed on the tensile creep
apparatus pictures in Figure 2. The variation in fringe order was
sensed by a photomultiplier tube, the successive maximums and mini-
mums being successive half fringe orders. The fringe order history
at the point of the complex model to be analyzed was transferred to
the chart of one channel of a brush recorder in the form of maxi-
mums and minimums of light intensity versus time. Partial fringe
orders were plotted between the maximums and minimums and a contin-
uous sinusoidal master curve of light intensity was drawn through

the points. The model was then loaded in such a manner as to match
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the output of the photomultiplier tube to this master curve. This
load was recorded simultaneously from a strain gage load cell.

The required load rate was relatively low and loading could
be done by hand. Several tests show that short time amplitude
errors of *20% in plotting and tracking the master fringe order
curve produce variations of only about *5% in the final stress
history. After a few practice runs one could follow the master
curve quite easily and get results reproducible to within 6%. An
electronic servo would be helpful if a very large number of solu-

tions were to be run.

4, MODEL MATERIAL

The model material was a mixture of epoxy resins supplied by
CIBA Products Company, Fair Lawn, New Jersey. A mixture of Aral-
dite 502 casting resin and Araldite 508 flexible modifier with
triethylenetetramine hardener can be prepared having a range of
relaxation times suitable for photoviscoelastic model experiments.
The materials are mechanically and optically linear for a wide
range of stresses and temperatures, and have less than 1% permanent
creep. The materials used for models reported here were mixes of
Araldite 502 and 508 with 10% hardener. The resin components are
heated to 125°F., mixed thoroughly, and cast into sheets between
glass plates. Wiping the glass plates with commercial Hysol AC4-
4368 mold release agent will prevent adhesion to the mold. The

mixture is cured for 12 hours at 160°F.




5. VISCOELASTIC PLATE WITH HOLE

A strip three inches wide and eight inches long was cut from
a cast sheet of Y¥-inch thick material and a %-inch diameter hole
machined in its center. Rigid grips were bonded along the shorter
sides. A tensile creep specimen was prepared from the same sheet
and tested (Figure 3).

The model was placed in a light field on the photoviscoelastic
bench described in Section 2 and shown in Figure 1. 1In one test
plane, polarizing sheets (Polaroid HN32) were used and rotated
during the test to monitor the isoclinic patterns. 1In a second
test, fixed polarizing sheets having attached quarter wave plates
were used to check the isochromatic patterns. A weight was hung
on the specimen and the specimen was allowed to creep under the
constant load.

Photographs were made of the changing fringe patterns and the
data was subsequently read from the film using an enlarger and a
microscope. A print of the model fringe pattern at 10,500 seconds
after loading is reproduced in Figure 4. Zero time corresponds to
the application of the load. The isoclinic patterns did not vary
during the test.

The isochromatic history at the point of maximum stress at
the edge of the hole was read from the film. This curve differs

only by a constant from the curve representing the isochromatic

- history in a tensile creep (constant stress) test (Figure 5).

This constant is the ratio of stresses. The stress at the edge of

the hole is thus found to be constant with time and its magnitude
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is easily computed using the tensile calibration. This test is
trivial in that the outcome can be predicted knowing that the
material is linear viscoelastic and having a solution for the
stresses in an elastic material in this configuration.

A Hysol 4485 (elastic) model of the same dimensions was pre-
pared and tested to determine the stress at the edge of the hole.
These results agreed with the photoviscoelastic test and the ana-

lytical solution.

6. VISCOELASTIC PLATE WITH UNBONDED RIGID INCLUSION

The hole of the viscoelastic plate (Section 5) was then fitted
with an aluminum disc. The aluminum disc was machined so that it
would slide smoothly into the hole of the relaxed viscoelastic
plate after a layer of Teflon tape had been bonded around its edge.
The model was placed in the polarized light field and loaded in
tension with a weight. Selected photographs taken during the test
are shown in Figure 6. Comparing the fringe patterns from the two
tests reveals a difference as the strains become large. In this
test, as the model strains the sides of the hole bear against the
rigid disc while the top of the hole pulls away from the surface
of the disc.

The maximum shear stress still occurs at the side of the hole
where it bears against the disc. The fringe order history at this
point was read and was found to be nearly identical with the fringe
order history in the plate without the inclusion. The isoclinic

at this point was constant during the test.
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A Hysol 4485 model was fitted with a solid disc and the maxi-
mum fringe order at the edge of the hole was compared to the fringe
order in the same plate without the disc. No difference in the

fringe order versus applied stress behavior could be found.

7. VISCOELASTIC PLATE WITH BONDED RIGID INCLUSION

A viscoelastic plate 8 inches long, 3 inches wide, and 0.25
inches thick was prepared with a %-inch diameter hole. An alumi-
num disc was machined to fit into the relaxed plate with approxi-
mately 0.002 diametrical clearance. The disc was bonded into the
plate. Adhesive used for bonding the rigid disc into the plate
consisted of an identical mix of the epoxy used to case the plate
itself.

The plate was placed in the polariscope and loaded with a
weight. The fringes were recorded on the 35mm pulse camera. One
run was made with plane polarizers rotating in a stepwise manner
for recording the isoclinic history. During the initial moments
of the test the isoclinics obscured the rapidly changing isochro-
matics so a second run was made using circularly polarized light.

A more accurate observation of the isochromatics could be made in
this second run. Figure 7 shows the isoclinics at 70 seconds after
loading; this is typical of the pattern throughout the test. The
isochromatics are shown in Figure 8. These photographs were selec-
ted from those made during the second test. The maximum fringe
order in this test occurred at points on the centerline of the

model 0.125 inches above and below the rigid disc.
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The fringe order history at these points is shown in Figure 9.
The isoclinic orientation at these points was constant.

In a plate with a hole, points of high stress occur at the
sides and the top and bottom surfaces of the hole. These same
points exhibited nearly zero fringe order in the plate with the
bonded rigid disc. A point of high stress in the plate with the
rigid disc occurred along the sides of the disc 0.125 inches away
from the disc. The fringe order history here lagged at the maxi-
mum point by approximately % throughout the test. An analog solu-
tion was run for this point. The principal stress difference his-

tory as determined from the analog is shown in Figure 10.

8. VISCOELASTIC PLATE WITH BONDED ELASTIC INCLUSION

A viscoelastic plate of the same dimensions as the preceeding
tests was prepared. A %-inch diameter circular disc of low modu-
lus (465 psi) Hysol 4485 was machined to a loose fit with the hole
in the viscoelastic plate. As in the test of Section 7, the disc
was bonded into the plate with the same epoxy as was used to cast
the plate. It is important to match the properties of the adhes-
ive to the properties of the plate. Even a thin layer of rigid
adhesive would have altered the fringe pattern considerably.

The plate was placed in the polariscope and loaded with a
weight. Tests were run with plane polarized light and with circu-
larly polarized light as in Test 7. The isocliniecs at 2,000 sec-
onds after loading are shown in Figure 11. This pattern is fairly

typical of the isoclinic pattern throughout the test. Selected
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photographs of the isochromatics occurring in circularly polarized
light are shown in Figure 12.

The isochromatic patterns of this test show some similarities
to the previous test with the rigid disc. The fringe order at the
sides of the hole and at the top and bottom of the hole remained
less than 1 throughout the test. The maximum fringe order again
occurred 0.125 inch above and below the inclusion and is shown in
Figure 13. This same point is the point of minimum fringe order
in a simple plate with a hole. An analog solution was run and the
history of the maximum principal stress difference was determined

(Figure 14).

9. NON-HOMOGENEOUS VISCOELASTIC PLATE

A loading jig was constructed to apply uniform pressure along
the edge of a low modulus plate (Figure 15). Air pressure is
applied through a thin latex diaphragm. Plexiglas plates contain
the model and prevent it from buckling. A copious layer of sili-
cone oil is spread between the model and the plexiglas, keeping
friction to an insignificant level. The whole jig can be placed
in the polariscope since the loads on the plexiglas are well below
the level necessary to cause any fringes. Pressure is supplied to
the model by filling a storage tank to the predetermined pressure
and then opening a valve. The volume of the jig is very small
compared to the volume of the storage tank.

A diagram of the test specimen is shown in Figure 16. A

homogeneous calibration specimen was made of Hysol 4485 to deter-
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mine the actual pressure acting on the model for a given air pres-
sure. Photographs of the loaded Hysol model are shown in Figure
17 and the calibration curve in Figure 18, The photographs were
taken several weeks after the calibration and show a considerable
edge fringe. This disturbance was not evident when the actual
calibration was performed.

Two sheets, A and B, having different relaxation times were
cast in the laboratory. The relaxation time is varied by changing
the proportions when mixing the epoxy resins. Sheet A was a 50/50
mix of Araldite 502 and 508 plus 10% hardener, and Sheet B was a
45/50 mix plus 10% hardener. The tensile creep compliances of A
and B are shown in Figure 19. Blocks of these materials 2-5/8
inches by 3 inches were machined and the 2-5/8 inches edges of one
"A" block and one "B" block were bonded together. The epoxy mix-
ture used to cast Sheet A was used for the adhesive to join Blocks
A and B, thus insuring that no further non-homogeneity would be
introduced. One 6 inch edge of the composite model was then bonded
securely to a %-inch square aluminum bar. The opposite 6 inch edge
which was to be exposed to the pressure loading was then machined
to the required final dimension. A high speed router was used to
produce a smooth edge.

The model was allowed to relax at testing temperature (70°F)
for 12 hours. It was then wiped with a generous layer of low
viscosity silicone o0il and placed in the calibrated loading jig.
The model was loaded with a step input of 15 psi air pressure

(11.1 psi effective pressure) and the resulting fringe patterns
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were photographed with the 35mm pulse camera.

The model was tested first in plane polarized light with ro-
tating polaroids to determine the isoclinic history. A set of the
photographs taken 5 seconds, 30 seconds, and 10,000 seconds after
loading are shown in Figure 20, Another test was performed with
circularly polarized light to check the isochromatics. Photographs
selected at several times after loading are shown in Figure 21.
The fringe order data was read from the film using an enlarger
with a microscope being used to view high fringe order regions of
the negative.

The maximum fringe order in both A and B occurred on the
pressurized surface near the A-B interface. As near as could be
determined, the isoclinic orientation at these points was constant
throughout the test (Figure 19). The isochromatic histories for
A and B are shown in Figure 22.

Analog solutions were performed to determine the history of
the principal stress difference for these points in part A and B
of the model. These solutions are shown in Figure 23, along with
the solution for a homogeneous model. The stress in the non-homo-
geneous model is temporarily increased during the early part of
the test and then relaxes toward homogeneous model value for times
of the order of the relaxation time for the material. Enlargements
of the model show the irregularity in the loaded boundary as the
lower modulus (B) part experiences a larger strain than the higher
modulus (A) part. This irregularity becomes less pronounced near

the end of the test,
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10. EMBEDDED POLARISCOPE

The embedded polaroid technique described here was developed
for studying the stresses in three-dimensional models of low modu-
lus material. One possible application is gravity loading of low
modulus materials. For these experiments, the model material must
have a very low modulus in order to maintain similarity when load-
ed by gravity. The ordinary embedded polariscope is much too stiff
for this application. Another possible application is the study
of three-dimensional viscoelastic models in which the changing
fringe patterns must be observed so that frozen stress techniques
cannot be used.

The standard embedded polaroid technique consists of bonding
a polarizing sheet to a thin slice which is cast into a three-di-
mensional model. The model is placed in a tank and the fringe
patterns in the embedded sheet are observed. This technique has
been used in high modulus elastic models, however, special problems
arise in using this technique for low modulus elastic and visco-
elastic models.

Available polarizing films have a modulus of about 105 psi.
The model materials of interest have moduli in the region of lO2
psi to lO3 psi. The polarizing film thus cannot be placed direct-
ly into these models without drastically altering the stress field
when the model is strained. However, the reinforcing effect of
the polarizing film can be considerably reduced if it is divided
into very small pieces with spaces between the pieces. Two tech-

niques for cutting and applying the polarizing film will be de-
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scribed and the performance of a model having a finely divided

polarizing film bonded to it will be presented below.

10.1. POLAROID PREPARATION

A polarizing film incorporating % A compensation (Polaroid
HNCP 37) was used for these experiments. The polarizing sheet, as
received from the manufacturer, consists of a polarizing film
0.0025 inches thick sandwiched between transparent sheets of plexi-
glas. If the polarizing sheet is immersed in dichloromethane, the
plexiglas will soften and may be scraped off the polarizing film.
Two or three immersions may be required to remove the plexiglas
completely. The film may tend to curl and is best stored under a

weighted flat surface.

METHOD I.

The film is sliced in the jig shown in Figure 24. A sheet of
0.010 latex rubber (dental dam) is bonded to the platen and the
polarizing film is bonded to the rubber with contact cement. The
slicing head has four razor blade knives clamped between ball bear-
ing rollers. The rollers serve to hold the film as the knives
slice through the film. The slicing head is guided by the index-
ing T-square of the slicing jig. The film can thus be sliced into
uniform ribbons. The platen is rotated 90° and the process re-
peated, leaving the polarizing film sliced into uniform squares.

The rubber sheet is then peeled from the platen. The rubber

sheet is placed on a flat surface and uniformly stretched to get
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the desired spacing between the squares. The area around the patch
of polaroid squares is coated with an appropriate release agent
(polyvinyl alcohol or Hysol AC4-4368 mold release agent).

The squares are bonded to the sheet of model material using
an uncured mixture of the model material itself as the adhesive.
The use of a high modulus adhesive would interfere considerably
with the stress distribution in the model. The area to be bonded
is coated with adhesive and placed against the polaroid patch and
allowed to cure. After cure, the rubber sheet may be peeled off
leaving the squares on the model.

Polaroid film may be bonded to the opposite side of the model
slice in the same manner effecting a transmission polariscope. An
alternative procedure is to coat the opposite side of the slice
with a reflecting material. This procedure has the advantage of
doubling the number of isochromatic fringes observed. A film of
aluminum deposited by vacuum has been successfully used for a re-
flector. If the film is very thin, many small cracks will form
when it is loaded, destroying its reinforcing effect.

This slicing method has the advantage of being able to adjust
the spacing between the squares of polaroid. The several operations
involved, however, take time and technique. Method II has proven

to be a more reliable approach for most tests.

METHOD II.
A polarizing film is prepared and bonded directly to the model

with an adhesive consisting of the mixture used to cast the model
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material itself. The use of such an adhesive is essential to in-
sure homogeneity of the final model. Care must be taken to insure
that the film is bonded smoothly to the model. The adhesive mix-
ture should be deaerated in a vacuum and the film applied to the
model and rolled to force out trapped air. The adhesive is first
allowed to cure at a temperature slightly above room temperature
and then cured at its normal schedule. If the model is placed di-
rectly in a hot oven, small bubbles will form between the polariz-
ing film and the model.

The polarizing film is cut into squares with the apparatus
shown in Figure 25. The cutting head consists of a gang of ten
slitting saws 0.2 inches apart and each 0.006 inches thick mounted
on a mandrel in a vertical mill. The model is fastened to a flat
angle bracket with double coated tape. The saws are set deep
enough to cut through the film and 0.001 to 0.003 inches into the
model. A mandrel speed of 2700 rpm and a feed of 5 inches/minute
set to climb mill works very well. The slots cut into the sheet
do not interfere with the model behavior as they are subsequently
filled with model material when the sheet is cast into the final

three-dimensional model.

10.2 CALIBRATION

A calibration test was performed on a Hysol 4485 plate with a
hole (Figure 26). One part of the model was covered with bonded
polaroid squares and a symmetrical part was left undisturbed for

viewing in conventional polarized light. The model was loaded in
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tension and the maximum fringe order at the edges of the hole was
observed. The fringe order at the edges of the hole was observed.
The fringe order was the same in the bonded polaroid region as it
was in the undisturbed region, thus illustrating that the effect
of the bonded polaroid squares is sufficiently small.

Figure 27 shows a cylinder of viscoelastic material in a
Plexiglas case which has been instrumented with sheets having pola-

roid squares bonded to both sides.
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Figure 1. Photoviscoelastic Bench
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Figure 2. Tensile Creep Apparatus
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Figure 4.

10,500 sec.

Plate with Hole,
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12 sec. 28 sec. 48 sec.

100 sec. 870 sec. 1260 sec.

2160 sec. 4320 sec. 12,300 sec.

Figure 6. Plate with Unbonded Rigid Inclusion, Light Field.
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Figure 7. Plate with Bonded Rigid Inclusion, Isoclinics.
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20 sec. 50 sec. 100 sec. 300 sec.

700 sec. 2000 sec. 5100 sec. 18,500 sec.

Figure 8. Plate with Bonded Rigid Inclusion,
Isochromatics, Light Field.
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Figure 11. Plate with Bonded Hysol Disc, Isoclinics.
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0.2 sec.

350 sec.

25 sec. 90 sec. 114 sec.

1450 sec. 5600 sec. 46,800 sec.

Figure 12.

Plate with Bonded Hysol Disc,

Isochromatics, Light Field.
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A) Latex Diaphragm

B) Plexiglass Plates

Figure 15. Edge Pressure Loading Jig.
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Figure 17. Edge Loaded Calibration Model.
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l

Figure 20. Edge Pressurized, Non-Homogeneous Plate, Isoclinics.
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- Figure 21. Edge Pressurized, Non-Homogeneous Plate,
Isochromatics.
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Sliced film on rubber sheet.

Slicing head.
Platen.

Indexing T-square.

Figure 24. Polaroid Slicer.
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Figure 25. Gang Saw for Slicing Polaroid Film.
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Figure 26. Calibration Model.
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Figure 27. Three Dimensional Model with
Imbedded Polariscope.
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C. HEATED CIRCULAR DISK
by
T. A. Johnson

The change in stress with time in a circular viscoelastic.
plate with a circular hole subjected to a steady non-uniform tem-
perature distribution and a uniform pressure distribution on the
outer boundary was determined by the analog method.

The loading jig, testing apparatus, and experimental procedure
was identical to that described in the last status reportl and de-
partmental report2 except as follows:

(1) The resistance wire heater was circular, instead of star-
shaped, to conform to the circular port.

(2) The latex diaphragm had no slack, fitting the model like a
gasket, barely touching it in the undeformed state. Hence, unlike
the previous tests on the star-grain model, the diaphragm had to
stretch to follow the deforming material.

(3) An electric time counter was placed over the specimen,
allowing the fringe pattern and time to be recorded on the same
film. (See Figure 1).

The motivation for this revised design was to facilitate con-

struction of the diaphragm itself and to effect a more uniform

lDill and Bollard, "Photothermoviscoelasticity Status Report,”

Department of Aeronautics and Astronautics, University of
Washington, July 1965.

2Dill and Fowlkes, "Photoviscoelasticity,"” Report 65-1, Department

of Aeronautics and Astronautics, University of Washington, Septem-
ber 1965.
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pressure on the outer boundary than had been obtained previously.
In comparing with the previous diaphragms, it appeared that the
stretching of the latex did not affect the linearity of actual
pressure in the model versus gage pressure of the diaphragm. It is
also interesting that the pressure efficiency of the jig was 75%,
which is in the range of the efficiencies of 68-75% previously ob-
tained.

As Figure 1 shows, the pressure was uniform on the boundary;
this is indicated by the concentric character of the fringe pattern.

The model was heated to an axially-symmetric steady-state
temperature. The radial variation of temperature is shown in Fig-
ure 2. The pressure was suddenly applied to the outer edge. The
variation of fringe order at a point on the inner boundary is
shown in Figure 3 for two differen£ applied pfessures. The stress
on the inné} boundary was then determined by the analog method
(Figure 4).

The stress on the inner boundary was expected to be smaller
at short times because of the higher rate of relaxation in the
hotter material. The stress should then tend to the elasticity
solution. The result has this property.

The purpose of this test was to compare an experimental solu-
tion with an analytical solution for some non-trivial thermovisco-
elastic problem. The analytical solution is, however, not yet

complete.
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Figure 1. Fringe Pattern for Heated Disk.
(run 2, 99.4 seconds)
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D, FARADAY CELL POLARISCOPE
by
M. E. Fourney

In the general photoelastic or photoviscoelastic problem, the
direction of the principal stresses must be determined. This is
generally done by observing the isoclinics for various angles while
the loading and strain field remain constant. The isoclinic is the
locus of points having constant inclination of principal axes of
the dielectric tensor. They are obtained by transmitting linear
polarized light through the model. By changing the direction of
polarization of the light, one can find the direction of the princi-
pal axes for all points in the model.

For an elastic material under constant loads, this can easily
be achieved by manually changing the plane of polarization of the
light. For dynamic loading or viscoelastic stress fields that are
slowly varying functions of time, a mechanical rotating element
polariscope has been designed and built. This has been described
in some detail in the status report of July 1965. For more rapid
dynamic loads or for short times, when the stress field for visco-
elastic material is a rapidly varying function of time, a Faraday
cell polariscope has been designed. The Faraday cell is an electro-
optic device; it has the inherent ability to alter the plane of
polarization of the observing light at very high speeds.

The Faraday Effect consists of a rotation of the plane of
polarization by an applied magnetic field. ' The rotation is propor-

tional to the path length in the medium and to the component of the
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magnetic field in the direction of propagation. The angle of ro-
tation is given by

o = VBd
where B is the component of the magnetic field in the direction of
propagation, d is the path length, and V is the Verdet constant.

Conventionally, positive Verdet constant means that the plane
of polarization is rotated, by passage through the medium, in the
same sense as the direction of flow of positive electric current »
flowing in a solenoid which could produce the magnetic field. The
rotation is in the same sense for either direction of propagation
of the light. Hence, the rotation could be multiplied by reflecting
the light several times through the active medium.

When light is transmitted through a medium it is absorbed
according to the relations

I(X) = Ipe ¥
where k is the absorption coefficient. Both the Verdet constant
and the absorption coefficient are functions of the wavelength of
light.

A convenient arrangement for a Faraday cell is to place the
active material inside a solenoid. The selection of the active
material is based on a high value of the Verdet constant but low
value of absorption coefficient. The material that has been selec-

ted is a high density lead glass. The constants of this glass are

given by the supplier as follows:

V = 0.109 min/cm - gauss,
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1/Io = 97.5% /in,
For A = 7000A°.

Two glass rods 10 inches long with a square cross-section one
inch on a side were obtained and the ends polished. A solenoid
was wound to supply the required magnetic field. Figure 1 shows
both this solenoid and the glass rod. The cell was found to give
2.2° of rotation per ampere for the mercury green line,

A small amount of residual strain was observed in the rod
when placed in a polariscope; however, it is not large enough to
cause serious distortion of an image that is transmitted through
the rod.

The solenoid has been constructed in a manner to keep the in-
ductance low so that the switching of the cell could be rapid. The
inductance of the solenoid is 14.7 millihenries.

A polariscope is under construction that will utilize the
Faraday cell as an element to rotate the plane of polarization of
the light. The purpose and general construction features will be
similar to the rotating element polariscope previously discussed.
The major difference will be the speed of rotation. In the Fara-
day cell polariscope, the only limitation is the speed with which
the magnetic field of the solenoid can be altered.

A general schematic diagram of the Faraday cell polariscope

is shown in Figure 2.
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Figure 1. Faraday Cell Glass Rod and Solenoid.
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E., NON-LINEAR PHOTOMECHANICS
by
P. Ramanaiah

1, INTRODUCTION

One of the main problems of a structural engineer is the pre-
diction of the strength and deformation characteristics of various
structures made of different types of materials. With the tremen-
dous advancement of industry, more and more materials of widely
differing characteristics are being used as structural materials.
These materials cannot be adequately treated by the usual linear
elasticity theory. For example, rubbers used in industry behave
non-linearly in their stress-deformation characteristics. High
polymers, used extensively as part of solid propellants for rockets,
have time dependent mechanical behavior. In order to keep pace
with the industry, the modern engineer is forced to deal with such
materials.

The stress analysis of a structure, even with simple constitu-
tive equations such as classical linear elasticity, becomes very
complicated if the shape of the structure is irregular. If the
constitutive equation is non-linear, the problems of stress analysis.
almost defy any analytical solution except for some very simple
body shapes and types of loading. 1In such cases, it is desiraﬁle
to have an experimental procedure to find the stresses in the body.
There are several such methods, but we are mainly concerned with
the generalization of the method of experimental stress analysis

known as photoelasticity.
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When certain transparent materials are strained, they become
doubly refractive and therefore exhibit fringe patterns when placed
between polaroids. Such materials are called birefringent. Photo-
mechanics is based on the assumption that the birefringence exhib-
ited by a material depends upon the strain it has undergone. The
solution of a stress analysis problem can be determined experimen-—
tally in the following way. A model is constructed from the bire-~
fringent material and loaded. The birefringence is recorded. The
relation between birefringence and strain or stress then gives in-
formation about the solution to the problem.

This procedure has been used for some time for the solution of
linear elasticity problems [1].l More recently the solution of
linear viscoelasticity problems has been obtained in this way [2]-
[9]. There were also attempts to extend the method to the case of
materials in an elastic-plastic state. See [10]-[12].

The theory presented by Mindlin [2], Read [3], and Dill [4]
presumes the mechanical-optic relation to be similar to the stress-
strain relation for viscoelastic materials. Their work is limited
to small displacement gradients. The investigations made by Frocht
and Thomson [10] and Monch and Loreck [11] are mainly experimental
and they are marked by the absence of any theoretical investigation

of the rheo-optic relation2 used. It is not at all obvious how the

lNumbers in square brackets indicate the references listed at the

end of the report.
2The terms rheo-optic relation, photo-mechanical relation, and
mechanical-optic relation are used synonymously. By this we mean
a constitutive equation relating stress or deformation tensors to
the refraction or related tensors.
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rheo-optic constitutive equations obtained by them from simple ex-
periments can be generalized to more complicated situations, espe-
cially when the equations are non-linear. The work of Tokouka [12]
is theoretical in nature and is based on the proposition that the
dielectric constants of a solid depend upon elastic and plastic
strains of the material. We believe that this proposition is very
restrictive and the resulting theory has limited, if any, applica-
tion.

Any rational extension of the existing methods of stress analy-
sis by photo-methods to a more wider class of problems can be
achieved only by establishing a rigorous general theory of photo-
mechanical constitution equations. The aim of the present article
is to establish such a theory. We shall make use of the methods
recently used successfully in the theory of non-linear mechanical
constitutive equations, especially the concept of fading memory
first proposed by Coleman and Noll [13]. wWe derive, in Chapter 5,
a very general photo-mechanical constitutive equation satisfying
the proper invariance requirements. The existing linear theories
of photo-mechanics (photoelasticity and photoviscoelasticity) are
shown to be special cases of the general theory as presented in
this article. A theoretical basis for non-linear photoviscoelas-
ticity and non-linear photoelasticity is therefore established.
Finally, we show that the theory of photoplasticity as was presented
in References [10] and [11] is no more than non-linear photoelastici-

ty.
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2. GENERAL PRINCIPLES
2.1 KINEMATICS [15]

The motion of a material continuum can be described by speci-
fying the motion of each of its particles. Consider a material
particle X occupying position X in the reference configuration.

As time proceeds, this material particle occupies different posi-
tions in space. Suppose it occupies positions X and g at times t
and T (T<t) respectively, where t is the present time. The coordi-
nate systems used to describe the configurations at different times
may be different and curvilinear in general. Then the motion of
this generic particle X can be described by

g =E8(X,T). (2.1:1)
The gradient of § with respect to X is called the deformation

gradient at the material point X and time T

F(%,T) = VX g(,}slT)i (2']-32)

~

where ¥, indicates gradient with respect to X. It is important

X

~

to note here that the deformation gradient not only depends on the
configuration at time T, but also is a function of the reference

configuration.

In the mechanics of continuous media, one of the fundamental
principles is the permanence of matter. According to this prin-

ciple, no region of finite positive volume is deformed into one of

3We will use the symbol "~" under letters to denote vectors and
tensors. The words tensor and "linear transformation from a three-
dimensional Euclidean vector space into itself" are used synony-
mously throughout this paper.
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zero, infinite or negative volume. For this condition to be true,
it is necessary and sufficient that

|getp| >0 . (2.1:3)
In other words, for any motion that does not violate the principle
of the permanence of matter, the matrix of the deformation gradient
is nonsingular at all times. This implies the above matrix is in-
vertible.

According to the polar decomposition theorem of algebra, for
any invertible tensor F there is a unique orthogonal tensor R and
unique positive definite symmetric tensors U and Y such that

F = RU (2.1:4)
F=¥R - (2.1:5)

orx

Geometrically this implies that any deformation from one configur-
ation to another can be resolved uniquely into a pure stretch U
followed by a rotation R or into a rotation R followed by a pure
stretch Y. The tensors U and V are called right and left stretch
tensors respectively. In order to calculate V, U, and R, we make

use of the relations

U =FF =C (2.1:6)

v2=FFT =B (2.1:7)
and T

U=RVR . (2.1:8)

where the superscript "T" indicates the transpose. From the above
equations, we can see that the calculation of the squares of the
stretch tensors is much easier than the calculation of U and ¥
themselves. Hence, the tensors c and E'have a special signifi-

cance and these are called the right and left Cauchy-Green tensors

respectively.
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So far we have put no restrictions on the magnitudes of the
deformation gradients or various other tensors defined in terms
of them. Later on we will have occasion to talk about infini-
tesimal deformations. In order to discuss the connection between
the finite and infinitesimal deformations, we define the magnitude
Igl of a tensor A by
|aj= Ver@a® (2.1:9)
where tr denotes the trace.
The displacement gradient H is defined by
H= F-I . (2.1:10)
Let us define a quantity € by
€= SI'TJ_.p |g(’r)| . (2.1:11)
We say that a deformation is infinitesimal provided that at all
times T < t
e << 1. (2.1:12)
We define the (infinitesimal) strain tensor E (T) and the
(infinitesimal) rotation tensor W(T) respectively by the equations
E(m)= slg(r) + g(nTl, (2.1:13)
and
w(r) = %Eg('r) - g('r)T] . (2.1:14)
The right and left stretch tensors and the Cauchy-Green ten-
sors are functions of T determined by H(T). We will say that a
function f of T is of the order of magnitude € indicated by o(c"),
if there exists a constant K independent of T such that
l£(m)| < xe™ . (2.1:15)
With this notation we would like to determine the order of magni-

tude of various tensors determined by H(T) when H(T) = O(¢):
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F=I+H=1+ 0(e) (2.1:16)
El=1-H+o0(?)

= I + O(¢) (2.1:17)
g=L+E+ o(e?) (2.1:18)
Y=1+E+o(? (2.1:19)
C =1 +2E+o0(c?) (2.1:20)
B=1I+2E+ O(ez) . (2.1:21)

From the equation (2.1:4) we have

R=1I+H+0(c?) . (2.1:22)
It is sometimes useful to employ the present configuration as the
reference configuration. We will indicate quantities computed on

this basis by subscript t. Since

E(T) =V E(X,T) =V _£"Vx, (2.1:23)
F(1) = E (T)E(t) . (2.1:24)
Hence, E, (1) = E(ME T (t) | (2.1:25)
and F (t) = E(t) E 7 (t) = L - (2.1:26)

Knowing Ft(T) we can calculate the relative right and left stretch

tensors and the relative Cauchy-Green tensors. For example,

C (1) = E (ME (M) . (2.1:27)
Therefore,

c(m) = E(®) g (ME(L) . (2.1:28)

2.2 FIELD EQUATIONS OF MECHANICS

The science of mechanics is based on such notions as motion,
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momentum, and stress4. Common experience with mechanical processes
shows that certain facts are always true. These facts are form-
ulated as general physical principles in the mathematical form of
field equations. These field equations are valid for all materials.
The purely mechanical processes which we now consider are governed
by the following principles:

1, Conservation of mass

2. Conservation of linear momentum, and

3. Conservation of moment of momentum.
For the derivation of the field equations expressing these physical
principles, the reader is referred to [147]. We will only enumerate
these field equations below.

Conservation of mass:

p + pdiv% =0, (2.2:1)
where p is the density of the material and the superposed dot in-
dicates material derivatives with respect to time.

Conservation of linear momentum:

divT + pb = pg (2.2:2)
where T is the Cauchy stress tensor and b is the body force per
unit mass. The stress tensor T is related to the basic concept

of stress vector t on a surface whose unit normal is n by

) = I8 - (2.2:2a)

4We will consider only simple mechanical processes here. We will

completely ignore considerations such as temperature, body couples,
and couple stresses. We will consider electromagnetic and mechan-
ical interactions subsequently.
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Conservation of moment of momentums

T=1T" . (2.2:3)

We must add appropriate boundary conditions to these equa-
tions. If S is the boundary of the body in some configuration,
then the stress boundary conditions restrict the allowable stresses
by the requirement that the applied traction vector at any point on
the surface should be the same as the stress vector at that point,
i.e.,

Tn = £(§) on S . (2.2:4)
In cases where the shape of the configuration is restricted, the
appropriate boundary conditions are the restrictions placed on the
allowable displacements on the boundary

u=g(x) ons, (2.2:5)

where u is the displacement vector defined by

uX,t)= x(X,t) - X . (2.2:6)
In some cases, stress boundary conditions are specified on part of
the boundary and displacement boundary conditions are given on the

rest of the boundary.

2.3 FIELD EQUATIONS OF ELECTROMAGNETISM
The field equations of electromagnetism are derived from the
following physical principles:
1. Conservation of charge, and

2. Conservation of magnetic flux.
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Except on some singular surfaces these principles lead to the
field equations:5
Conservation of charge:

div j + 3g =0 , (2.3:1)
3t

where j is the current density and q is the charge density.

Conservation of magnetic flux:

Curl e + 8b = O (2.3:2)
?t
and
divb =0 , (2.3:3)

(0]
where e is the electric field and b is the magnetic flux density.
The general solution of equations (2.3:1) to (2.3:3) may be ex-

pressed in terms of new fields:

q = div 4 . (2.3:4)

j =Curl h - 3d (2.3:5)
£

b = curl a | (2.3:6)

3t

Where d is the charge potential (usually called electric displace-

ment.,)

h is the current potential (usually called magnetic field
intensity.)

a is the magnetic potential.

V is the electric potential.

5For a rigorous derivation of the field equations from the con-

servation principles the reader is referred to [14].
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These equations must be supplemented by the Maxwell-Lorentz
aether relations. The aether relations postulate that there exists
fundamental constants €, and W, which depend only on the units of
length, time, charge and magnetic flux such that the following re-

lations are valid both within and without materials:6

g = €og (2.3:8)
and
Q =1 E . (2.3:9)
Mo

All the above equations are valid wherever the fields are continu-
ous, but, across a surface of discontinuity, such as the boundary
between regions of different material properties, the fields suf-
fer jumps. 1In order to relate the fields on both sides, consider

a surface of discontinuity with unit-normal vV, moving with speed

u. - Then the following jump conditions hold:7
vxlel-u [p]=0, (2.3:10)
L]-v=0, | (2.3:11)
and Ei] ‘v o-u [q] =0 (2.3:12)

where the symbol E ] indicates the jump in the quantity across
the surface of discontinuity.
It is customary to consider the total charge to be made up of
two parts:
1. qy the bound charge, and

2. qs the free charge.

6
We follow the point of view of Toupin [14].

For[a derivation of these jump conditions, the reader is referred
to [14].
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Then
q =Gy +dg - (2.3:13)
The total current is considered to be the sum of three parts:
1. if the free current,
2. ip the polarization current, and
3. im the magnetization current;
then
A=ttt dn - (2.3:14)
The auxiliary charge and currents are defined in terms of the

polarization p and magnetization m:

q, = -div p , (2.3:15)
3. = EE + Curl(va) ’ (2.3:16)
P 3t ~
and
im = Curlm, (2.3:17)

where v is the velocity of the medium.

Auxiliary potentials h and 4, which we call partial potentials,

are defined by

h=1b - m - pxy (2.3:18)
and No
d=c¢coe +p - (2.3:19)

In terms of the partial potentials, we have

jg =Curl h - 34 , (2.3:20)
t
and
e = div 4 . (2.3:21)
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The jump conditions for the partial potentials across a surface of
discontinuity, with normal y and apeed u are
[a] -v =0 (2.3:22)

and
v X Ehj*+ u Eg] =0 . (2.3:23)

2.4 MATERIAL INDIFFERENCE

The field equations, when combined with the jump conditions,
form an under determined system of equations. This can be expected
because the equations are valid for all materials and fail to ac-
count for the characteristics of the particular material under
study. To make the system of equations determinate, we introduce
additional equations defining ideal materials. These additional
equations are called constitutive equations.

Constitutive equations are often formulated as functional re-
lations between various state variables. These functionals cannot
be arbitrarily chosen, but must satisfy some broadly established
general principles.8

The principle variously known as the principle of material in-
difference, principle of material objectivity, or principle of
isotropy of space is one such physical principle. It is a state-
ment of the requirement that "the response of the material is in-
dependent of the observer."

Even though implicit use of this principle can be found in

earlier literature (the reader can find some historical remarks

8l«Eor]a discussion of these principles the reader is referred to
14 ].

-69-



about this principle in [15]), the first satisfactory statement
is due to Noll [16] under the name "Principle of Isotropy of Space."
The following statement of this principle was subsequently given
by Truesdell and Noll [15]:
Constitutive equations must be invariant under changes of
frame of reference. If a constitutive equation is satisfied for a

process consisting of a motion and symmetric stress tensor given by

X

= x(X,t) , (2.4:1)

T = T(X,t) (2.4:2)

* *
then it must be satisfied also for any equivalent process {x ,T }

given by
* * %*
x =% (X,t) =Q(t)x(X,t) + C(t) , (2.4:3)
T = o x.tY) = T, Q)T , (2.4:4)
t* = t-a (2.4:5)

where C(t) is an arbitrary point, Q(t) an arbitrary orthogonal
tensor valued function of time, and "a" an arbitrary number.

The transformation Q(t) represents a time dependent rotation
of the coordinate frame, and g(t) a time dependent shift of the
origin of the frame. As an example, consider a typical mechanical
constitutive equation of the form

T(X,t) = ;t{§<§L§>} (2.4:6)
where Qt is a functional and the subscript t representing that
the functional relation is dependent on t. Then, according to the
principle of material indifference, the functional gt must be

such that
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* * * e
T (Xt) =3+ {x (X,7)] (2.4:7)
under the group of transformations given by (2.4:3) to (2.4:5).
Equation (2.4:7) may also be viewed as stating that constitutive
functional relations should be the same in two reference frames
which have a relative motion with respect to one another.

In subsequent chapters, we will have occasion to use the
various kinematical quantities in the starred reference frame. We
will indicate these quantities by a star as a superscript. Using
ordinary differentiation rules, various kinematical quantities in
the starred reference frame are calculated below. Deformation
gradient F:

E"(t)

vx?f,* (?S' t)
= Q(£) VX (X, t)
= Q(t)E(t) (2.4:8)

Cauchy-Green tensors C and B:

c* ) = g ()T (1)

= F(£)TQ(t) TQ(t)E(t)
= E(t)TE(t)

= c(t) (2.4:9)

C(t) is invariant under the transformation (2.4:3)

E(0)E ()T

B (t)

QIE)E(R)E(£)TQ(E)T
= g(t)B(8)Q(e)T (2.4:10)
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2.5 ISOTROPY

In mechanics of deformable bodies, the adjective "isotropic"
is often used very loosely. It is a common practice to say "a
material is isotropic if it does not have any preferred direc-
tions.” This definition is vague. We will make the concept of
isotropy precise [16].

We define a material to be isotropic if and only if the con-
stitutive relation of the material is invariant under the trans-

formation of reference configuration:
* %k

X—=X  =PIXx +a (2.5:1)
%k
T—sT =T1T (2.5:2)

where p is an arbitrary proper orthogonal tensor function of time
and g(t) an arbitrary vector. A material which is not isotropic
is called anisotropic.

This definition has one drawback: the use of the phrase
"the constitutive relation of the material.” An example will make
this clear.

Consider the following possible problems involving the same
material:

1. Evaluation of the stress within the material due to

a given applied loading, and

2. Passage of electromagnetic waves through a dielectric.

The first problem is governed by the field equations of
mechanics and the second problem is governed by the equations of

electromagnetism. In both cases we should add appropriate con-
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stitutive equations in order to solve the problem. In the first
problem, the constitutive equation relating the stress and strain
tensor is the one we should add, whereas in the second case the
equation relating the electric field and electric displacement is
the appropriate one. Hence, the phrase “the constitutive relation
of the material” is meaningful only when the problem under con-
sideration is specified.

This drawback in definition can be avoided by defining mech-
anical isotropy, electromagnetic isotropy, etc., separately. For
example, we define a material to be mechanically isotropic if and
only if the mechanical constitutive relation of the material is
invariant under the transformation (2.5:1). Whenever the situa-
tion does not make it clear, we will specify the type of isotropy
under consideration. A material may be isotropic in certain re-
spects and anisotropic in other respects. For example, mechanical
isotropy does not necessarily imply electromagnetic isotropy of a
material. In later sections we will have occasion to talk about
such materials.

The various kinematical quantities under the transformation
of the reference configuration given by equation (2.5:1) can be
easily calculated using ordinary rules of differentiation. Fol-
lowing are the calculations of some of these kinematical quan-
tities, where the superscript "double star” is used to indicate

them.
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Deformation gradient F: .

* %
(£) = Ty ** x(X,t)

~

= (vxf}s)vx** ’}_s
= F(t)R(t)- (2.5:3) i

Cauchy-Green tensors C and B:
* %

~

() = B (e)TE " (x)
= 2(t) "E(t) TE(£) B (t)

= E(t)Tg(t)g(t) (2.5:4)

* % T

(£) = E T (8)E  (t)

(o]

= F()R(E)R(E) TE() T
= E(t) . (2.5:5) .

B(t) is invariant under the transformation (2.5:1).

Left Stretch tensor A
* %

(t)

[8** (£)1°

>
- B(t)
= v(t)- (2.5:5)

V(t) is invariant under transformation (2.5:1)
Rotation tensor R: From equation (2.1:5), we have
V(t) = E()R(E) - (2.5:6)
Hence, from equation (2.5:5), we can write
E(RMET = 2" ()R (0)T

T

**k
E(t)R(t)R (t)
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or
*%*

~

)T = pe)TR(e) T (2.5:7)
Taking the transpose of both sides

R™(t) = R(B)R(L) . (2.5:8)

3. CONSTITUTIVE EQUATIONS OF A SIMPLE MATERIAL
3.1 GENERAL REMARKS

In photomechanics we have to consider both mechanical and
electromagnetic fields at the same time. For such cases, not one
but a set of constitutive equations relating the various field
quantities are necessary for an exact theory. One such set of

very general constitutive equations might be

t

T=3 {EnN.e(™,b(n}, (3.1:1)
t

p=3 {x&x.m,e(m),b(m)}, (3.1:2)
T=e=®
t

m=2 {x(X,7),e(7),b(T)}, (3.1:3)
T==wx
t

i=2% {xE&,m),e(m),b(mn)} - (3.1:4)
T==®

We shall confine our attention to ideal dielectrics defined
by the relations m = o, if = 0, p depends on the present value
of e and does not depend on b. Furthermore, we wish to consider
only problems involving very weak electromagnetic fields (propa-
gation of light). Therefore, we can neglect the dependence of

T on g and b in (3.1:1), and take p as linearly dependent on e:
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T = 3{xx.m}, (3.1:5)

Blx(x,m) le - (3.1:6)

R

The constitutive relation (3.1:5) will be considered in

Section 3.2 and the relation (3.1:6) in Section 3.3.

3.2 MECHANICAL CONSTITUTIVE EQUATION OF A SIMPLE MATERIAL

In this section we will discuss mechanical constitutive equa-
tions under the following two requirements:

1. The principle of material indifference must be

satisfied, and

2. The material is mechanically isotropic.

We will restrict ourselves to the purely mechanical case and ne-
glect the influence of any other fields such as electromagnetic
fields.

A simple material is defined as one, in which the stress at
any point X at the present time t depends only on the history of
the deformation gradient F(T) in the neighborhood of the point X
under consideration:

Ix.t) = JE(T)} . (3.2:1)

The functional in equation (3.2:1) cannot be arbitrary. It
is restricted to the class of functionals that satisfy the prin-
ciple of material indifference. According to this principle, the
constitutive equation (3.1:1) should have the same form in the new

frame of coordinates:
*
* * * t
T (X.t) =J{g (1)} . (3.2:2)

~
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Making use of equations (2.4:4), (2.4:8), and (3.2:1) leads to
the relation

() 3{E (M) 1T (t) = 3lQ(MIE(M)] (3.2:3)

which must be identically satisfied for every orthogonal tensor
Q(t) and every invertible tensor F(t).

If the material is mechanically isotropic, this puts further
restrictions on the constitutive relation (3.2:1). The mechanical
constitutive equation (3.2:1) must then remain invariant under the

transformation (2.5:1):

t
Tx .0 = 3T ET, (3.2:4)

where the double star indicates quantities under transformation
(2.5:1). Using equations (2.5:2) and (2.5:3), we obtain the re-
lation

S{F(x, M1 = SLEE, TR ) (3.2:5)

which must be satisfied identically for every proper orthogonal
tensor P and every invertible tensor F.

Equations (3.2:3) and (3.2:5) express the restrictions im-
posed on the mechanical constitutive equation by the principle of
material indifference and material isotropy respectively. Explicit
representation for the constitutive functionals subject to either
of these restrictions can be obtained by making use of the right
and left deformation tensors. We will consider the use of these
tensors separately. For the sake of simplicity in writing, we

omit indication of the dependence of various quantities on time.
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a. Use of Right Deformation Tensor

The mechanical constitutive equation satisfying the restric-~
tion (3.2:3) imposed by the principle of material indifference can
be obtained by using the right deformation tensor. Making use of

equation (2.1:4), equation (3.2:3) can be written as follows:

ggfgg}gT = 3{Qru} (3.2:7)

for every orthogonal transformation Q. Let us take Q to be equal

to gT. With this choice of Q, equation (3.2:7) takes the form

T = 3{r} = r3(uIR". (3.2:8)

It can be seen by direct substitution that this restriction on

J is also sufficient. Equation (3.2:8) represents the general
form of the mechanical constitutive equation of a simple material
satisfying the principle of material indifference. It is equally
valid for both isotropic and anisotropic materials. If the mater-
ial is also isotropic, then equation (3.2:8) must be invariant

under the transformation (2.5:1):

% % * % * %
T =R gy IR T. (3.2:9)

Making use of the equations (2.5:2), (2.5:3) and (2.5:4), this

equation can be reduced to

RT3{2}£ = a{pTup} . (3.2:10)

Functionals satisfying this type of relation are called isotropic

functionals.® Thus, if the material is isotropic, the constitutive

functional J must be an isotropic functional.

’For an exact definition of isotropic function see Truesdell and
Noll [15], pp 22-23.
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b. Use of Left Deformation Tensor

The general mechanical constitutive equation satisfying the
restriction (3.2:3) imposed by the mechanical isotropy of the
material can be obtained in a simple form by using the left defor-
mation tensor. Use of equation (2.1:5) in equation (3.2:5) leads
to

JIr} = 3lvre} , (3.2:11)
for every proper orthogonal transformation P. Let us choose P
equal to BT. With this choice, equation (3.2:11]) leads to
T = 3{F} = 3lvl = J(B) - (3.2:12)

This equation, in order to represent a valid constitutive equation,
must satisfy the principle of material indifference. It must be

invariant under transformation (2.4:3) - (2.4:5):

T = 5{13,*} . (3.2:13)

From equations (2.4:4) and (2.4:10), we get
QE{E}QT = E{QQQT} . (3.2:14)

That is, J must be an isotropic functional.

Summarizing the results of this Section, we have the follow-
ing statement:

The mechanical constitutive equation of an isotropic simple
material has one of the forms of equations (3.2:8) or (3.2:12)

~

where the functionals J and J are isotropic functionals.
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3.3 PHOTOMECHANICAL CONSTITUTIVE EQUATIONS
We consider an ideal dielectric defined by the relation
(3.1:6)

R = R{x(X,7)le (3.3:1)

From (2.3:19), we can define a new tensor K such that
d = eoKe (3.3:2)
The tensor K is called the dielectric tensor.
We consider only the class of materials for which the dielec-
tric tensor at any particle X and time t is completely determined
by the history of the deformation gradient:

t
K(x,t) = &{F(m)} . (3.3:3)

One might also consider the following possible constitutive equa-

tions: .
KX, t) = & {z(n)1, (3.3:4)
or
t t
K(x,t) = &,{T(1),E(T)} - (3.3:5)

Since we assume that all the materials under consideration are
mechanically simple, use of the mechanical constitutive equation
(3.2:1) reduces equations (3.3:4) and (3.3:5) to the form of equa-
tion (3.3:3). Hence, in this section we consider only equation
(3.3:3).

We make the following assumptions:

1. The electromagnetic quantities d and e transform like
vectors from one frame of spacial coordinates to another.

2. The principle of material indifference may be extended to
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assert that the constitutive equation (3.3:3) must be invariant
under the transformation (2.4:3), and

3. The material is photomechanically isotropic so that the
constitutive relation (3.3:3) is invariant under the transforma-
tion (2.5:1).

In order to determine transformation of K under (2.4:3), let
us see how the equation (3.3:2) transforms under the change of
spacial frame given by equation (2.4:3)

* * *
d" = €K e - (3.3:6)

~

But from the first assumption,
*

d = (3.3:7)
and
*
e = Qe . (3.3:8)
Hence
Q4 = QeokKe
*
= 605 g% (3.3:9)
or
*
(QK - K Q)e = O » (3.3:10)
Equation (3.3:9) must be satisfied for all e. Thus,
* T
K = QKRQ"- (3.3:11)

The dielectric tensor K, analogous to T, transforms like a second
order tensor under (2.4:3). Hence, we can use exactly the same

reasoning as was used in Section 3.2 to show that the requirement
of material indifference and isotropy reduces equation (3.3:3) to

either one of the forms.
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K = RR{CIRT (3.3:12)
or
K = #{B}: (3.3:13)

Where the functional must be isotropic:

ogicloT = {oce”? . (3.3:14)

4., APPROXIMATE MECHANICAL CONSTITUTIVE EQUATIONS
4.1 FADING MEMORY

So far we have dealt only with the general mechanical consti-
tutive relation. In this chapter we will investigate some approxi-
mations of practical value. For a more thorough treatment of the
subject matter of this chapter, the reader is referred to Refer-
ences (l14) and (15). We will give only the essentials, following
the above references.

In Section 3.2 we have defined a simple material as one in
which the stress at the present time is determined by the entire
history of the deformation gradient. We now consider materials,
known as materials with fading memory, for which deformations that
occurred in the distant past have less influence in determining
the present stress than those that occurred in the recent past.

In order to give a precise mathematical formulation to the
concept of fading memory, let us introduce the influence function
(Coleman and Noll) or obliviator (Truesdell and Noll).

A function h is called an obliviator of order n>0 if it

satisfies the following conditions.
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a) h(s) is defined for 0<s<= and has positive real
values: h(s)>0
b) h(s) is normalized by the condition
h(0) =1 (4.1:1)
c) h(s) decays to zero in such a way that
lim snh(s)

S o

monotonically for large s.

0 (4.1:2)

For example,

h(s) = (E%I)P (4.1:3)

is an obliviator of order n<p. An exponential is an

h(s) = e ®S, 850 , (4.1:4)

obliviator of arbitrary order.

Consider the linear function space of the histories of sym-
metric tensors g(s). The parameter s is to be regarded as time
measured backward from the present. We define the recollection of

a history g(s) as the norm of history G(s) defined by

ey, <I°[h(s)lg(s)|]2ds>% , (4.1:5)

where ——
Jtr[g(s)zj (4.1:6)

g (s)]

is the magnitude of the tensor G(s). The collection of all his-
tories with finite recollection forms a Hilbert Space H. The

inner product of two histories G(s) and H(s) in H is given by

(g(s),g(s)>h = .[oTrfg(s)-g(s)]h(s)zds . (4.1:7)

Now the principle of fading memory can be put in the following
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precise mathematical formlO: a functional § is a fading memory
functional if there exists an obliviator of order greater than

n + 1/2 such that the response functional 3{g (g)} is defined and
n times Frechet-~differentiable in a neighborhood of the zero his-
tory of the function space H.

It is important to note here that the above principle does
not require any admissible history G(s) to be continuous. Hence
this principle can be applied to histories of the type that occur
in stress-relaxation experiments.

We can see the implications of the principle of the fading
memory, from the way we defined the norm in the space of histories.
As the integral defining the norm is weighted with a decaying func-
tion, two histories can be close to one another if the values of
G(s) are close enough in recent past (small values of s) even if

they are far apart in distant past (large values of s).

4.2 FINITE LINEAR VISCOELASTICITY
In this section we will derive the constitutive relation de-
fining finite linear viscoelasticity. This theory is due to
Coleman and Noll (13). This section follows their presentation.
We have shown in Section 3.2 that the general constitutive
relation of a simple material (restricted by the principle of

material indifference) has the form (3.2:8):

lOTruesdell and Noll (15), call this the stronger principle of

fading memory.
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R(E)TT(E)R(E) = 3{u(e-D)] - (4.2:1)

The stretch tensor Q(T) is computed with the initial state
as the reference state. However, for the puspose of the present
chapter, we would like the arguments of the response functional
J to be quantities computed with the present state as reference
configuration.

From (2.1:6), we see that U(T) is determined by C(T). From

(2.1:4) and (2.1:28), we find

c(m) = g®) T (My(t) (4.2:2)
where
C. (1) = R(B)TC (MR(L) . (4.2:3)

Therefore, C(7T) is determined by‘ﬁk(T) and C(t). This enables us

to derive a new functional g such that

) = Rlg, (£-5):c(t)] (4.2:4)
where

G (1) =¢C (T)-L , (4.2:5)

T(t) = R(t)TT(L)R(E) (4.2:6)

and X depends on the history gt(T) but only on the present value
of C.
If the material has always been at rest

Pal
gt(t—s) =1

and hence the right side becomes a function of C(t) only. This
function f£(C(t)) is called the "equilibrium term." Thus, equa-

tion (4.2:4) may be written in the alternate form
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T(t) = £(c(t)) + Rlg (.=8):C(B)}  (4.2:7)
g=cw

where the new functional ﬁ , denoted by the same symbol, is such
that

ff{o;c(t)} =0 . (4.2:8)

The functional R® can be approximated by a bounded, homogene-
ous, polynomial functional of gt(t-s) under suitable conditions.
In order to achieve this, Coleman and Noll (13) assumed the fol-~
lowing additional smoothness requirements:

a) The Frechet differentiability of the response functional
postulated in the principle of fading memory is uniform in the
tensor parameter C(t), and

b) The tensor function £(C) of equation (4.2:7) is n times
continuously differentiable.

These two assumptions together with the principle of fading

memory are sufficient to justify the approximationll

)

n

= 1 sk . n) .

£(Q) + zk_-é 2{g, (s)ic) + o (ngt(s)“h o (4.2:9)
k=1

where the order symbol "o" is used in the sense

lim o(e) =0 (4.2:10)
E—»0 €

11 . . ‘s
For convenilence in writing the explicit dependence of all the

quantities on the present time t is suppressed in most of the

equations hereafter: i.e., Ta= T(t), etc.
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and 6k3{ } is the k™ variation of the functional R{ 1.

If we consider the particular case of n = 1, we obtain

L

T = £(C) + 8%{g (s):c} + o <||gt(s)||§ > . (4.2:11)

~ ~ ~t
Consider deformation histories gt(s) which are small in the recent
past. Because the integral defining the norm is weighted with an
obliviator, the norm of‘gt(s) can be considered small even if the
deformations are large in distant past. For such deformations the
last term in equation (4.2:11) can be neglected compared to the

other terms and we have the approximation

RTIR ¥ £(0) + 82{g, (s):g) . (4.2:12)

g

Now, let us make use of a theorem in the theory of Hilbert spaces

(generally known as Riesz-Frechet Theorem) which states that

o]

0% (g, (s):c) = [  Lizig)g, (s)as . (4.2:13)

R
s=o0

where I'(s;C), for each s and each C, is a linear transformation of
space of symmetric tensors into itself (i.e., a fourth order ten-
sor). The constitutive relation defining finite linear visco-

elasticity (4.2:12) then assumes the form

1))

= £(C) + I: z(s;g)gt(s)ds . (4.2:14)

In the case of isotropic materials, it can be shown (see Section
3.1) that the tensor valued function £(C) and the linear functional

given by the integral are isotropic in the sense

(4.2:15)



and

Q[IZE(S7S)Qt(S)dS]9T = I:E(S:Q,QQT)Q(S)Q,C(s)g(s)Tds ., (4.2:16)

for all orthogonal tensors g(t). It has been shown (see Truesdell
and Noll (15), article 37) that

£(C) = h I + h,C + h.c? (4.2:17)

o} 1 2

and
L(s:iC)G, (s)

A, (s;C)G, (s) + G, (s)A, (s:Q)
+ tr[gt(S),{\,z(S:g) ]L + tr[gt(S)A3(s;g)]g

+ tx]g, ()3, (s:Q) |c? (4.2:18)

where for each s the tensor functions éi(s:g) are isotropic and

hence have representations of the form (4.2:17).

4,3 SMALL DEFORMATIONS - LINEAR VISCOELASTICITY

The theory of finite linear viscoelasticity is based on the
assumption that the deformations are small in the recent past.
However, no restrictions whatsoever, were put on deformations in
remote past. In this chapter let us investigate the behavior of a
simple material with fading memory for small deformations. We use
the term "small deformation" in the sense as defined in Section 2.1.

Let us first consider, how the various quantities defined in
terms of deformation gradients F(t), that occur in the constitu-
tive equation (4.2:14) of finite linear viscoelasficity, may be

approximated in the case of small deformations.
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From equation (2.1:22),

BT(t) = ;3,(t)"1 =I-W(t) + o(c?). (4.3:1)

Using equations (2.1:16) and (2.1:17) in equation (2.1:25),

[t+am]z+rao]’

I +H(T) - H(t) + o(c?). (4.3:2)

E,(T)

Hence gt(T) can be written as

_ T
¢ (M) = E.(MTE, (7)

=z +[gm + 50T - [5@®) + 5OT] + 0(e?)
=1+ 2[§(T) - g(t)] + 0(e?)
=1+ o(ez). (4.3:3)

From the definition of gt(s),

G (s) = R(E)Tg, (t-s)R(t) - I

L+ 2[E(t-s) - E(60)] + 0(e?) . (4.3:4)

Using equation (2.1:20),
£(c(t)) = g[; + 2E(t) + O(ez)] . (4.3:5)
If the material has always been held in the reference configura-

tion, we have C(t) = I and the corresponding stress 20, called

the "residual stress", is given by

Iy = £(1) (4.3:6)
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By using the assumption that g(g(t)) is continuously differentiable,

we can expand E(g(t)) in a power series about I and write

£(C(t)) = T, + L(E(L)) + 0(e?) (4.3:7)

~0

where L is a tensor valued linear function of E.
Making use of equations (2.1:22), (4.3:4) and (4.3:7) in

equation (4.2:14) and neglecting terms of O(en) for n > 1, we get

T(E) - T, = W(E)T, - T H(t) + L(E(t))

Lo
+ 2[:2(5;5)[§(t—s) - E(t)]ds . (4.3:8)

Let us define a new fourth order tensor g(s) called stress relaxa-

tion function by
J(s) = - 2f°°,1;(€;;,)d§ . (4.3:9)
S

Then

3(s) =< 3(s) = 20(s: 1) (4.3:10)

and hence we may write equation (4.3:8) in the form

T(t) - Ty = W(E)Ty - TH(t)

+ [lﬂ + E(O)JE(‘C) + f: i(s)[g(t—s)]ds.(4.3=11)

When the residual stress Lo is zero, the reference configuration
is called the "natural state.” 1In this state, the above constitu-

tive equation reduces to

L) = [L-, + Q(O)]g(t) + f: i(s)[g(t—s)]ds . (4.3:12)
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This is the constitutive equation of the classical theory of lin-
ear viscoelasticity. Notice that this equation is valid for
materials without any symmetry at all. If the material is iso-
tropic then we can show that L and J(s) should be isotropic func-
tions of E(t). The constitutive equation of isotropic infinitesi-

mal viscoelasticity may be written in the form
T(e) = (O + X)) trg(e) + [7 T(s)trE(t-s)dslz

+ 200 + TOIE®) + 2]7 T(s)E(t-s)ds (4.3:13)

where A and U are material constants and A(s) and g(s) are material
functions of time. The constants A and ¢ coincide with the Lamé€
constants of the material in equilibrium. The functions A + A (t)
and U + 4 (t) may be regarded as time dependent Lamé coefficients
for the stress relaxation response to a sudden deformation at

time t = 0.

4.4 ELASTICITY

The constitutive equations of the theories of nonlinear and
classical linear elasticities can be deducted from the previous
theory. An elastic material is defined as a simple material for
which tﬁe stress at time t depends only on the local configuration
at time t. Hence the constitutive equation defining as elastic

material takes the form:

T(t) = J(E(t)) - (4.4:1)
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This can be easily seen to be the case corresponding to [ = 0
for finite deformations and J = 0 for infinitesimal deformations.
In this case the constitutive equations (4.2:14) and (4.3:13)

reduce to

Il
o

T(t) I+ hyB(t) + hB(t)? (4.4:2)

and

T(t) = AItrE(t) + 2ug(t) . (4.4:3)

Equations (4.4:2) and (4.4:3) are the constitutive equations of
isotropic nonlinear elasticity and isotropic linear (infinitesimal)

elasticity respectively.

5. APPROXIMATE PHOTOMECHANICAL CONSTITUTIVE EQUATIONS

In Sections 3.2 and 3.3 we have shown that the general mech-
anical and photomechanical constitutive equations of an isotropic
simple material has the form of equations (3.2:12) and (3.3:13).
For further discussion of photomechanics, it is necessary to assume
that the electromechanical constitutive equation (3.3:13) is in-
vertible where the functionals are isotropic.

We will show in Chapter 6 that photo methods can be effective-
ly used to "solve" two dimensional problems of classical linear
elasticity and viscoelasticity: Methods are available to measure
the fringe order n(t) which is proportional to the difference in

the principle values of the refraction tensor

N(t) = K(t) 2. (5.1:1)
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For the discussion of nonlinear problems in general, however, we
assume that we can experimentally determine the refraction tensor

N(t) itself. Therefore, we introduce a new functional such that

t
B(t) = 2{N(T)} (5.1:2)

where £ is an isotropic functional. Using this equation and equa-
tion (3.2:12), we get the more convenient form of the electro-

mechanical constitutive equation

T(t)

f
i

—~—
12
-3

et

= g{g(t—?)} . (5.1:3)

This equation can be valid only for isotropic materials (both
mechanically and electromechanically).

Define a new tensor by

N, (t-s) = N(t-s)N(e) "L . (5.1:4)
We can then write equation (5.1:3) in the form
o(t) = TiN, (t-8):N(t)} (5.1:5)

that is the stress is a functional of the history gt(T) and a
function of the present value g(t). From the definition (5.1:4),
y»t(t) =1 ; (5.1:6)

therefore, equation (5.1:5) can be written in the form analogous

to equation (4.2:7):

-93-~



T(t) = y(N(t)) + g{'yjt(t-§);g(t)} , (5.1:7)
(o]

where
N (T) = N.(T) - L (5.1:7a)

and the functional % is such that

2{o:n(t)} = o. (5.1:8)

The function Y and the functional 2 must be isotropic in their
arguments.

We make the following assumptions similar to those that were
made in Chapter 4:

l. Principle of fading memory for electromechanical case:
There exists an obliviator of order greater than n + % such that
the response functional Efﬁt(t—s);g(t)} is defined and n times
Frechet differentiable in a neighborhood of the zero history of
the function space Hl of symmetric tensors ﬁt(t-s).

2. The Frechet differentiability of the response functional
2 postulated in the above principle of fading memory is uniform
in the tensor parameter N(t).

3. The tensor function Y(N(t)) of equation (5.1:7) is n times

continuously differentiable.

These assumptions are sufficient to justify the approximation

>~15

T(t) = y(@(t)) +
k

51 SR2UF, (t-s),5(0))
1

+ O(|N, (t-s) - Lll;l ) (5.1:9)
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where the norm of N is defined similar to that of G (see equation
4,1:5) and the order symbol is used in the sense of equation

(4.2:10). In particular,

(N(t)) + 8% (N, (t-s) - I:N(t)}
s=0 ~t ~

T(t) = X

~t

4

o(||N, (t-s) - Ll]i ) . (5.1:10)

For deformations such that the histories gt(t—s) are small in

recent past, we can neglect the last term in this equation:

T(t) ¥ y(N(£)) + 6} {§, (t-s):N(E)} . (5.1:11)
s=0

By the Riesz-Frechet theorem, the linéar tensor valued functional

62 can be written as

Zgofﬁt(t's)7g(t)} = Io K(S7E)§t(t—s)ds (5.1:12)

where ¥Y(s;N) is a fourth order tensor. Thus, we can write equa-

tion (5.1:11) in the form

T(t) = Y(§(&) + [T ¥(siDN, (t-s)as - (5.1:13)
As the functions are isotropic, they must satisfy the identities

Q) YN (ENQE)T = y(Q(IN()IQ(E)T) (5.1:14)
and

Q(t)[I: Y(S;E){gt(t—s)}dng(t)T =

f: 2(57Q§Q?)Q(t-s)§t(t—s)Q(t-s)Tds (5.1:15)
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for all orthogonal tensors Q. Thus they have representations

similar to equations (4.2:17) and (4.2:18), i.e.,

L) = Bor + hoNee) + Bone)? (5.1:16)

and

L(s:iNIN, (t=s) = A, (s;N)N, (t=s) + N, (t-s)a, (s;N)

_ 1
+ tr[gt(t—s)éz(s;g) I

+ e[, (e=s) B4 (5510 [N (6)

+ [N, (t-s)E, (s510) [n(e) 2 (5.1:17)

where, for each s, the tensors gi(s;N) are isotropic and hence
have representations of the form (5.1:16).

In order to further simplify equation (5.1:13), we consider
the following approximation. Define a new tensor gkt) as fol-
lows:

N loNm -1 . (5.1:18)

N'(T)
Then,

N' (0)

0o . (5.1:19)

We wish to consider the case when N' remains small. Let

®
i

Sup |g'(¢)| , (5.1:20)
T

where |N'(T)| is given by (4.1:6). We say that the changes in

refraction tensor are small if
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e<<1 (5.1:21)

and we consider deformations such that the above inequality is
true.
By the third assumption made in the beginning of this chapter,

we can expand Y in a power series of N'(t):

Y(N(t)) = y(N(O)) + LN'(t) + 0(e2) (5.1:22)

where L is a fourth order tensor. Because of the assumption that

the stress is zero in the reference state,

Y(N(0)) =0 . (5.1:23)
Thus,
y(N(t)) = LN'(t) + 0(62) . (5.1:24)
Furthermore, we get
N (T) =L +R'(T) - K'(t) + 0(e?) . (5.1:25)

Making use of equations (5.1:24) and (5.1:25) in equation (5.1:13)

and neglecting all terms of 0(€n) for n > 1, we get,

Te) = 1y () + [T (s D[R (ems)-n' (8) Jas (5.1:26)

Let us define a new function g(s) called optical relaxation func-

tion by

12 ]
—
n
~
I

-I: Y(5,1)ag . (5.1:27)
Then ’

¥(s:1) = 32 3(s) = i(s) . (5.1:28)
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Using equation (5.1:28), we can write equation (5.1:26) in the

form

T(e) = [L+ 20 ]y (e) + f: d(s)[x' (t-9) Jas . (5.1:29)

The functions L and § must be isotropic functions of N(t) and
thus can be represented in the form of equation (5.1:16). Using
this representation, and simplifying the above isotropic electro-
mechanical constitutive equation for the case of infinitesimal

changes in the dielectric tensor, we obtain

T(t) = [ (o + TOhexn' (&) + [7 F(s)exn' (t-s)as |x

+ 208 + BONN' (8) + 27 3(s)N’ (t-s)as (5.1:30)

where 0 and 8 are material constants and a(t) and B(t) are material
functions which must be evaluated experimentally.

So far, we have discussed time dependent photomechanical
equations. But for many materials, such as those used in photo-
elastic experiments, the stress at any time t can be determined
by the value of N(T) at time t. This corresponds to the case
where ¥ = 0. 1In such cases, the time dependent material functions
vanish in the photomechanical constitutive equations and equations

(5.1:13) and (5.1:30) simplify to

o'

T(t) =

~

~ e} 2
+ RIN'(£) + DN (¢) (5.1:31)

for the finite linear case, and
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T(t) = artrN'(t) + 2BN'(t) (5.1:32)

for the case of infinitesimal changes in the dielectric tensor.

6. LINEAR PHOTOMECHANICS
6.1 LINEAR PHOTOVISCOELASTICITY

By linear photoviscoelastcity we mean the experimental de-
termination of stresses by photo methods in bodies governed by the
constitutive equation of isotropic infinitesimal viscoelastcity.
This theory was explained by Dill in a series of articles (Refer-
ences [4], [5], and [6]). It is an important special case of the
general theory as given in this article. The presentation of this
section follows those articles closely.

The constitutive relation of isotropic, infinitesimal vis-
coelasticity is given by equation (4.3:13). Changing the variable

from s to T = t-s, equation (4.3:13) becomes

T(t) = { T exE(e) + [T F(e-m)exg(nIathz
+ 2T ()E(R) + 2fF S(e-m)g(rar . (6.1:1)

It is assumed that the material is in its natural configuration
up to time T = 0. In such a case, the lower limits in the inte-
grals of equation (6.1:1) can be replaced by zeros. Furthermore,

introducing new material functions defined by

)\l(t) = )\+—)\(t)" (6.1:2)
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and
My (t) = 2(pHi(t)) ;

equation (6.1l:1) may be written as

T(t) = [A (£)ExE(t) + [t A, (e=T)trE(T)ar |1
+ ul(t)g(t) + f: hl(t—T)g(T)dT

Integration by parts reduces this equation to

g(t) = f:[;xl(t-T)trg(T) + ul(t-T)g(T)]dT

Taking the trace of both sides yields
trg(t) = I:[3Xl(t-7) + ul(t-T)]tpg(T)dT
It is usual to write this in the form
%trg(t) = I:K(t—T)trE(T)dT ’

where
K(8) = A (8) + % u (8)

is called the bulk relaxation modulus.

From equations (6.1:5) and (6.1:6),

s(t) = f: Hl(t—T)é(T)dT ;
where

S(6) = T(t) - Ttro(e)z
and

£(t) = E(t) - derg(o)z
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are called stress deviator and strain deviator respectively. The
material function My is generally called shear relaxation modulus.
So far, we have discussed only the mechanical constitutive

equation; now we consider the photomechanical constitutive equa-
tion. We call a material linear photoviscoelastic if its mechan-
ical constitutive equation is of the form (6.1:1) and its electro-
mechanical constitutive equation is of the form of equation
(5.1:30). wWith the change of variable T = t-s, equation (5.1:30)

takes the form

T(t) = [ (4T (0)) exy’ (6)+ [T Z(e-m) ey’ (m)at ]z

+ 2(84B(0))N' (£) + [© F(t-T)N' (AT - (6.1:12)

If we assume that the body is in its natural configuration for
all times T < 0, we can replace the lower limits of the integrals

in the above equation by zeros:
z(t) = {(sTon e ©) + [C te-ney (marks
+ 2(B+B(0))N' (t) + :—'B-(t—'r)N'('r)d'r . (6.1:13)

Let us define new material functions al(t) and Bl(t) as follows:

al(t) = o+a(t) (6.1:14)

and
By (t) = B+B(t) . (6.1:15)

Introducing these new material functions in equation (6.1:13)
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and using integration by parts, we obtain

T(t) = I:[Lal(t-T)trﬁ'(T) + Bl(t-T)g'(T)]dT . (6.1:16)

Taking the trace of the above equation, we get

ern(t) = [ 30, (e=1) + 8, (t-1) Jexkr (mar . (6.1:17)
for an isotropic material N(0) = NyL- Then
NG’ (T) = R(T) .

The equation can be written in the form

trr(t) = I: @(t—T)trg(T)dT ’ (6.1:18)

where

v(g) = [3al(§) + Bl(i)]/No (6.1:19)

is called the optical bulk relaxation function.

From equations (6.1:16) and (6.1:17), we can write

s) = [ ye-npmar ; (6.1:20)
where

B(t) = N(t) - 3 trN(t)] (6.1:21)
and

v (8) = %Oul(§) : (6.1:22)

P is deviator of the refraction tensor and | is the optical relaxa-
tion function
Equation (6.1:20) can be used to calculate the difference in

principal stresses for a two dimensional linear viscoelastic
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problem, by using experimentally measured data. The reader is
referred to the articles by Dill and Fowlkes (References [6] and

[7]) for a detailed description of the experimental procedure.

6.2 LINEAR PHOTOELASTICITY

In Section 4.4 we defined an elastic material as a simple
material in which the stress at time t depends only on the deforma-
tion gradient at time t. In the mechanical constitutive equation
of such a material, all time dependent material functions vanish,
i.e., A(t) and u(t) are identically zero. This case is represented

by equation (4.4:3). In terms of deviatoric quantities we can

write
S = 2ug (6.2:1)
and
1 2
§t;g = (X+§ M) trE (6.2:2)

A material for which the stress tensor at any time t depends
only on the refraction tensor at that time will be called "photo-
elastic". Their photomechanical constitutive equation can be
written as

T = IotrN' + 2BN' . (6.2:3)

Taking the trace of this equation

trT 3atrg' + 2BtrN'

(3¢ + 2B)trN' (6.2:4)

From equation (6.2:3) and (6.2:4), we obtain
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_ 28 .
and

w|~

=1 2 .
trT = N (¢ + 3 B)trN . (6.2:6)

0

These two equations are the basic equations for the theory of

classical linear photoelasticity.

7. NONLINEAR PHOTOMECHANICS
7.1 NONLINEAR PHOTOVISCOELASTCITY

We say that a material is a photoviscoelastic material if
its mechanical constitutive equation is given by equation (3.2:12)
and if its electromechanical constitutive equation is given by
equation (3.3:13) and both functionals have fading memory. For
the discussion of nonlinear photomethods, we will assume that it
is possible to experimentally determine the tensor N(t). Thus,
we consider g(t) to be a known function of time.

Suppose we have a problem of stress analysis of a structure
made of viscoelastic material. The main difficulty in solving
this problem by photomethods is finding a suitable finite linear
photoviscoelastic material to serve as model material which is
transparent and with mechanical properties the same as the proto-
type. When such a material is found, a scale model of the actual
structure is made. This model is subjected to loads proportional
to those that are acting on the actual structure. By means of the
appropriate optical instrument, the history of the refraction ten-

sor N(t) as a function to time is measured at the point where the
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stress tensor is to be evaluated. Knowing the history of N(t) and
other material functions, the Cauchy Stress tensor in the model

structure can be found from equation (5.1:3)

T(t) = (N(M) . (7.1:1)
0

The stress in the actual structure is then evaluated by multiply-

ing the above stress tensor by the appropriate scale factor.

7.2 NONLINEAR PHOTOELASTICITY

In this Section we consider the theory of nonlinear photo-
elasticity by which we mean the determination of stresses by
photomethods in nonlinear elastic materials. We define a non-
linear photoelastic material to be a transparent dielectric whose
mechanical constitutive equation is of the form of equation (4.4:2)
and whose photomechanical constitutive equation is of the form of
equation (5,1:31).

The stress distribution in structures made of nonlinear
elastic materials can be determined experimentally by photomethods
if we can find a suitable nonlinear photoelastic model material.
The requirement is that the mechanical constitutive equations of
the model and actual materials are the same. By performing ex-
periments similar to those explained in the previous section, the
stress tensor in the structure can be determined.

Since every viscoelastic material is an elastic material for
sufficiently slow loading, the model material may be viscoelastic.

If, for example, the deformations are held constant for recent
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time, then, by equation (4.2:9), we have

3D
[

£ . (7.2:1)

This is the constitutive relation of a nonlinearly elastic material.

From equation (5.1:9) we have, in this case,
T(t) = Y(N(t)) (7.2:2)

for an isotropic material. 1In particular, this means that if the
model is allowed to reach an equilibrium state under constant load,
the stress state is that of an elastic material with constitutive

equation (7.2:1).

7.3 PROPORTIONAL LOADING

We consider a problem for which the stress at each point ex-
perience a step change with time; that is, the stress tensor is
zero for t < 0. 1In this case, we say that the structure experi-
ences proportional loading. We will now show that the stress state
is the solution to a family of nonlinear elasticity problems.

It was shown in Section (3.2) that the mechanical constitutive

equation of an isotropic simple material is

T = Q{E(i} :

We will consider the class of problems for which this constitutive

equation is invertible and can be written in the form

B(t) = @.{;Ij(tT:)} . (7.3:1)
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Consider the process of creep in which the particle experiences a
stress history which is zero for T £ 0 and constant for T > 0,

i.e.,
T(T) = th(T) (7.3:2)

where h(T) is the unit step function defined by

0 for T <0
n(m  {

1l for 7T >0 - (7.323)

For such a stress history, equation (7.3:1) takes the form

il

B(t) §{goh(1f)}

B(T,.t) - (7.3:4)

i

For each particular value of t, equation (7.3:4) is identical to
the mechanical constitutive equation of a nonlinear elastic ma-
terial. Thus, equation (7.3:4) can be considered as a one para-
meter family of mechanical constitutive equations, the parameter
being the continuous variable t. Different values of the para-
meter t define different nonlinear elastic materials. Suppose we
have solved the problem of stress analysis within a viscoelastic
structure and find the stress is constant. This problem could
have been solved as shown previously by photomethods. The stress
field in such a structure at any time t = tl coincides with the
stress field in a similar structure made of a nonlinear elastic

material whose mechanical constitutive equation is given by

B = B(T,.t;) - (7.3:5)
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Thus, by knowing the solution of the viscoelastic problem, we also
know the stress distribution in similar structures made of one of
a family of nonlinear elastic materials.

We conclude this section by considering an example illustrat-
ing the procedure. Consider a bar of finite linear viscoelastic
material under uniform axial loading. Let the mechanical consti-
tutive equation of the material under the uniaxial loading be

given by

t .
T(t) = G(O)F(A(t)) + [ G(t=T)F(A(t))dr (7.3:6)

where G(t) is a material function, A(t) is a time dependent stretch
ratio and F(A(t)) is a function of A(t). This equation is given

by Staverman and Schwarzl [19] on the basis of experimental results.
It has been shown by Lianis [18] to be a special case of equation
(4.2:14). 1If we assume the material to be in its natural state

for t < 0, the lower limit of the integral can be replaced by zero.

The equation can be inverted:

t .
f(t) = J(0)T(t) +_[ J(t=-T)T(T)dT , (7.3:7)
0

where J(t) is defined by the relation
t
f G(t-T)J(v)daT = t (7.3:8)
0

and
f(t) = F(A(t)) . (7.3:9)

In a creep process, the applied stress field is given by equation

(7.3:2), and equation (7.3:9) yields
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F(A(t)) = TyJ(t) . (7.3:10)
At any particular time tO' we get
F(X(to)) = TOJ(tO) . (7.3:11)

Different functions F give different equations, each of which de-
fine a certain nonlinear elastic material.

It should be clear that one cannot solve all elasticity prob-
lems this way. Only those problems may be treated in which the
stress state is the same for both a viscoelastic and an elastic
material. This implies that the stress state is independent, in

some respect, of the material properties.

7.4 REMARKS ON PHOTOPLASTICITY

In recent literature on photomethods of stress analysis, there
were attempts to extend the methods of classical photoelasticity
to the case of materials in elastic-plastic states (References 10,
11, 12). These methods are generally known under the name photo-
plasticity. In this section, we will consider the connection
between such methods and the general theory of photomechanics.

Let us consider the uniaxial deformation of two bodies made
of different materials, one a nonlinear elastic material and the
other a work hardening elastic-plastic material. Suppose the
applied load is monotonically increasing. Under such a load, the
stress~strain curve for both materials looks identical and one

cannot distinguish an elastic-plastic material from a nonlinear
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Both materials

Nonlinear elastic loading

material
A unloading

Stress

Work hardening elastic-plastic
material unloading

. Strain
Figure 7.4:1

elastic material. The real characteristics of these materials

appear only when there is unloading. During unloading, the non-

linear elastic material retraces the curve backward, whereas the

elastic-plastic material follows a
initial slope of the stress-strain
similar result is true in the case
under loads where

problems. Thus,

straight line parallel to the
curve (see Figure 7.4:1).. A
of two and three dimensional

no point experiences unloading,

the stress analysis problems for work hardening plastic materials

are indistinguishable from those for nonlinear elastic materials.

The plasticity problems considered
seem to involve no unloading. Our

therefore apply to their tests.

to assume that the stress is independent of time.

Furthermore,

in Reference [10] and [11]
remarks on nonlinear elasticity
the authors appear

If their
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assumption is correct, then Section 8.2 applies; if not, their
interpretation of their experiments is questionable.

If the problem involves an elastic-plastic material and some
point experiences unloading during the deformation process, then
the stress state cannot in general be determined by observations
on a viscoelastic model. It would be necessary to discover a
model material which is a transparent dielectric and which, at
least in the limit of slow loading, behaves as an elastic-plastic
material. A theory of this kind is presented in Reference [12].

We know of no such material.
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